THE UNIVERSITY OF SYDNEY

CHEMISTRY 1B - CHEM1102 SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2011

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Page 24 is for rough working only.

OFFICIAL USE ONLY

Multiple choice section Marks Pages Max Gained

Short answer section

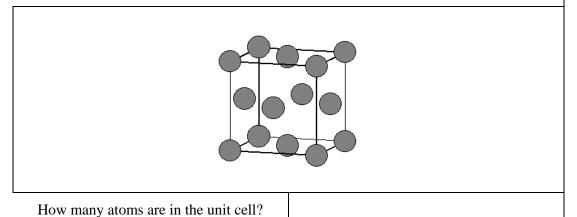
25

		Marks		
Page	Max	Gaine	d	Marker
10	8			
11	6			
12	8			
13	5			
14	3			
15	4			
16	2			
17	5			
18	7			
19	7			
20	6			
21	3			
22	5			
23	6			
Total	75			
Check	Total			

• Complete the following table. (ox = oxalate = $C_2O_4^{2-}$)

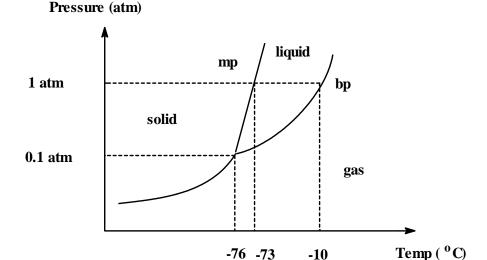
Marks 6

Formula	Na[FeCl ₄]	[CrCN(NH ₃) ₅]Br ₂	$K_3[VO_2(ox)_2]\cdot 3H_2O$
Oxidation state of transition metal ion			
Coordination number of transition metal ion			
Number of <i>d</i> -electrons in the transition metal ion			
Species formed upon dissolving in water			


CHEM1102 2011-N-4 2208(a)

	pH =	
At 25 °C, 1.00 L of Solution	on B consists of 74.5 g of NaOCl dissolved in water. on B.	
	pH =	
	red into Solution A (0.60 L). What amount of NaOH	
	- - - - - - - - - -	
	red into Solution A (0.60 L). What amount of NaOH	
	red into Solution A (0.60 L). What amount of NaOH	
	red into Solution A (0.60 L). What amount of NaOH	
	red into Solution A (0.60 L). What amount of NaOH	
	red into Solution A (0.60 L). What amount of NaOH	
	red into Solution A (0.60 L). What amount of NaOH	

	Answer:
What is the molar solubility	of BaSO ₄ in the presence of a 0.1 M solution of Na ₂ SO ₄ ?
	Answer:
	Ba^{2+} in humans is about 60 mg L^{-1} (4 × 10 ⁻⁴ M). Is there ing BaSO ₄ in the presence of 0.1 M Na ₂ SO ₄ solution?


• A face centred cubic (FCC) unit cell has the maximum possible space filling of 74 %. Show the close packed layers, labelling them A, B and C, on the unit cell below.

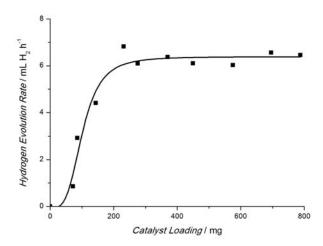
Marks 3

• The phase diagram for sulfur dioxide, SO₂, is shown below.

Marks 4

Io, the innermost of the four Galilean moons orbiting Jupiter, is the most geologically active body in the solar system. Its surface is covered with a frost of solid SO_2 . The atmospheric pressure on Io is 10^{-7} atm and the surface temperature is between 90 and 110 K (–183 to –163 °C). As the temperature is raised on Io, does the SO_2 melt or sublime?

Io has a hot molten magma core. What is the physical state of SO_2 several hundred metres below the surface of Io, where the temperature is -50 °C and the pressure rises to 1 atm?


Is it possible to "ice skate" on a surface of solid SO₂? Explain your answer.

• When irradiated with visible light, CdS can catalyse the production of H₂ from water.

Marks 2

$$H_2O + light \xrightarrow{CdS} H_2 + \frac{1}{2}O_2$$

The rate of H₂ production from 80 mL of water at constant illumination varies with the amount of catalyst present (*i.e.* CdS loading) as shown below.

Why does the rate of H₂ production as a function of catalyst loading plateau?

• Indicate the hybridisation of the carbon and nitrogen atoms in the diamine **P**.

Marks 5

$$H_2N$$
 NH_2 I

N atoms:

C atoms:

Draw the product of the reaction when diacyl chloride \mathbf{Q} reacts with water.

Kevlar (used in bullet-proof vests) is a polyamide polymer which is made from diacyl chloride building block \mathbf{Q} and diamine building block \mathbf{P} . Draw the repeating polymer unit formed in the reaction of \mathbf{P} with \mathbf{Q} .

• Complete the following table. If there is no reaction, write "NR". Show any relevant stereochemistry.

Marks 7

STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
	H ₂ , Pd/C	
0	Cr ₂ O ₇ ²⁻ / H ⁺	
OH	(i) (ii) work-up (H ₂ O/H ⁺)	OH
Br	conc. KOH in ethanol solvent	
Cl	hot aqueous NaOH	
	(CH₃)₂NH	

7

• Consider the following dehydration reaction.

OH conc. H₂SO₄

Use curly arrows to show the mechanism of this reaction.

Two minor products are also formed in this reaction. They both have the same molecular formula as the product above. Draw their structures and name them.

Structure	Name

• Consider tartaric acid, whose constitutional formula is shown below.

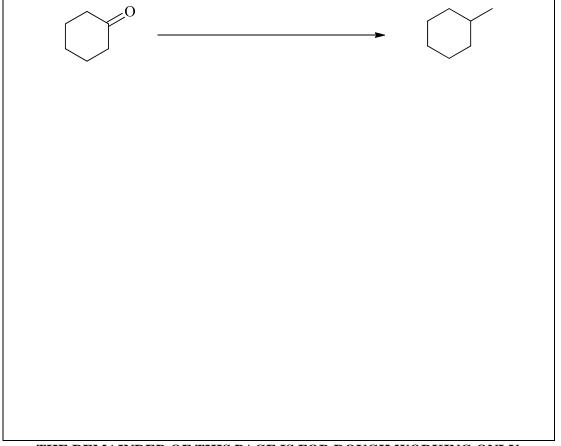
Marks 6

$$OH$$
 OH
 CO_2H

There are three stereoisomers of tartaric acid - a meso form and a pair of enantiomers. Explain this statement by drawing suitable 3-dimensional structures of tartaric acid and by assigning (R) and (S) stereocentres where appropriate.

• Compound **T** is a precursor in the synthesis of the asthma drug salbutamol.

Marks 3


2011-N-13

Give the molecular formula of compound **T**.

Give the structure(s) of all organic products formed when compound ${\bf T}$ is heated with 4 M NaOH.

• Devise a synthesis of methylcyclohexane from cyclohexanone. Note that more than one step will be required. Indicate all necessary reagents and the constitutional formulas of any intermediate compounds.

Marks 5

• Give the major product from the following reaction.	Marks 6
dilute H ₂ SO ₄	
Show the mechanism of the reaction. Make sure you show structural formulas for all relevant intermediate species and the final product, as well as using curly arrows to indicate the movement of electrons (<i>i.e.</i> the breaking and formation of bonds).	
Is the major product formed as the (R) -enantiomer, the (S) -enantiomer or a racemic mixture, or is it achiral? Give a reason for your answer.	_
Give the structure of the minor product of this reaction and explain why very little of it forms.	

CHEM1102 - CHEMISTRY 1B

DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \,\mathrm{J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$

Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$

Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \,\mathrm{C}^2 \,\mathrm{J}^{-1} \,\mathrm{m}^{-1}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 L atm K^{-1} mol^{-1}$

Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$

Mass of electron, $m_e = 9.1094 \times 10^{-31} \text{ kg}$

Mass of proton, $m_p = 1.6726 \times 10^{-27} \text{ kg}$

Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \, {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 $^{\circ}$ C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and 0 $^{\circ}$ C = 22.4 L

Density of water at 298 K = 0.997 g cm^{-3}

Conversion factors

 10^{-12}

pico

$$1 \text{ atm} = 760 \text{ mmHg} = 101.3 \text{ kPa}$$

$$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$$

$$0 \text{ °C} = 273 \text{ K}$$

$$1 \text{ Hz} = 1 \text{ s}^{-1}$$

$$1 \text{ tonne} = 10^{3} \text{ kg}$$

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

p

Decimal fractions Decimal multiples Fraction Prefix Multiple Prefix Symbol Symbol 10^{-3} 10^{3} milli kilo k m 10^{-6} 10^{6} micro mega M 10^{-9} 10^{9} nano giga G n

CHEM1102 - CHEMISTRY 1B

Standard Reduction Potentials, E°

Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(g) + 7H_2O$	+1.36
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$2\Pi (aq) + 2e \rightarrow \Pi_2(g)$	o (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
	, •
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.04 -0.13
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$	-0.04 -0.13 -0.14
Fe ³⁺ (aq) + 3e ⁻ \rightarrow Fe(s) Pb ²⁺ (aq) + 2e ⁻ \rightarrow Pb(s) Sn ²⁺ (aq) + 2e ⁻ \rightarrow Sn(s) Ni ²⁺ (aq) + 2e ⁻ \rightarrow Ni(s)	-0.04 -0.13 -0.14 -0.24
Fe ³⁺ (aq) + 3e ⁻ \rightarrow Fe(s) Pb ²⁺ (aq) + 2e ⁻ \rightarrow Pb(s) Sn ²⁺ (aq) + 2e ⁻ \rightarrow Sn(s) Ni ²⁺ (aq) + 2e ⁻ \rightarrow Ni(s) Cd ²⁺ (aq) + 2e ⁻ \rightarrow Cd(s)	-0.04 -0.13 -0.14 -0.24 -0.40
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76 -0.83
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.09
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.09 -2.36
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$ $Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.09 -2.36 -2.71

CHEM1102 - CHEMISTRY 1B

Useful formulas								
Quantum Chemistry	Electrochemistry							
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$							
$\lambda = h/mv$	$Moles\ of\ e^- = It/F$							
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$							
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$							
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$							
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	$= (RT/nF) \times \ln K$							
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$							
Acids and Bases	Gas Laws							
$pK_{w} = pH + pOH = 14.00$	PV = nRT							
$pK_{\rm w}=pK_{\rm a}+pK_{\rm b}=14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$							
$pH = pK_a + \log\{[A^-] / [HA]\}$	$E_{\rm k} = \frac{1}{2}mv^2$							
Radioactivity	Kinetics							
$t_{1/2} = \ln 2/\lambda$	$t_{1/2} = \ln 2/k$							
$A = \lambda N$	$k = Ae^{-Ea/RT}$							
$\ln(N_0/N_t) = \lambda t$	$\ln[A] = \ln[A]_{o} - kt$							
14 C age = 8033 ln(A_0/A_t) years	$\ln\frac{k_2}{k_1}=\frac{E_a}{R}\left(\frac{1}{T_1}-\frac{1}{T_2}\right)$							
Mathematics	Thermodynamics & Equilibrium							
If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$							
$ \ln x = 2.303 \log x $	$\Delta G^{\circ} = -RT \ln K$							
Area of circle = πr^2	$\Delta_{\mathrm{univ}} S^{\circ} = R \ln K$							
Surface area of sphere = $4\pi r^2$	$\ln \frac{K_2}{K_1} = \frac{-\Delta H^{\circ}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$							
Volume of sphere = $^4/_3 \pi r^3$	K_1 R T_2 T_1'							
Miscellaneous	Colligative Properties & Solutions							
$A = -\log \frac{I}{I_0}$	$\Pi = cRT$							
I_0	$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$							
$A = \varepsilon c l$	c = kp							
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	$\Delta T_{ m f} = K_{ m f} m$ $\Delta T_{ m b} = K_{ m b} m$							
$4\pi\varepsilon_0 r^{1/A}$	$\Delta T_{ m b} = K_{ m b} m$							

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																	2
HYDROGEN H																	HeLIUM He
1.008																	4.003
3	4											5	6	7	8	9	10
Lithium	BERYLLIUM											BORON B	CARBON	NITROGEN	OXYGEN	FLUORINE F	NEON NEON
6.941	Be 9.012											B 10.81	C 12.01	N 14.01	O 16.00	F 19.00	Ne 20.18
																17	
11 sodium	12 magnesium											13 aluminium	14 silicon	15 PHOSPHORUS	16 SULFUR	I / CHLORINE	18 argon
Na	Mg											Al	Si	P	S	Cl	Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K POTASSIUM	Calcium	SCANDIUM Sc	Ti Ti	VANADIUM V	Cr	MANGANESE Mn	Fe	Co	Nickel Ni	Cu	Znc Zn	Gallium	GERMANIUM	ARSENIC AS	SELENIUM Se	Bromine Br	KRYPTON Kr
39.10	40.08	44.96	47.88	▼ 50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON
Rb	Sr	\mathbf{Y}	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55 CAESIUM	56 BARIUM	57-71	72 HAFNIUM	73 TANTALUM	74 TUNGSTEN	75 RHENIUM	76 OSMIUM	77	78 PLATINUM	79	80 mercury	81 THALLIUM	82 LEAD	83 візмитн	84 POLONIUM	85 astatine	86 RADON
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103	104	105	106	107	108	109	110	111	112				_	_	
FRANCIUM	RADIUM		RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	DARMSTADTIUM	ROENTGENIUM	COPERNICIUM						
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn						
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]	[283]						

LANTHANOID S

ACTINOIDS

OID	57 Lanthanum La 138.91	58 CERIUM Ce 140.12	59 PRASEODYMIUM Pr 140.91	60 NEODYMIUM Nd 144.24	61 PROMETHIUM Pm [144.9]	62 Samarium Sm 150.4	63 Europium Eu 151.96	64 GADOLINIUM Gd 157.25	65 Terbium Tb 158.93	66 DYSPROSIUM Dy 162.50	67 ногмим Но 164.93	68 Erbium Er 167.26	69 THULIUM Tm 168.93	70	71 Lutetium Lu 174.97
S	89 ACTINIUM Ac [227.0]	90 THORIUM Th 232.04	91 PROTACTINIUM Pa [231.0]	92 URANIUM U 238.03	93 NEPTUNIUM Np [237.0]	94 PLUTONIUM Pu [239.1]	95 AMERICIUM AM [243.1]	96 CURIUM Cm [247.1]	97 BERKELLIUM Bk [247.1]	98 CALIFORNIUM Cf [252.1]	99 EINSTEINIUM Es [252.1]	100 FERMIUM Fm [257.1]	101 Mendelevium Md [256.1]	102 Nobelium No [259.1]	103 LAWRENCIUM Lr [260.1]